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The aerodynamic characteristics of bodies washed by an unsteady flow of gas behind a 
spherical shock wave differ appreciably from the values corresponding to steady flow, and 
have an appreciably different dependence on the basic flow parameters (Mach and Reynolds 
numbers) compared with the steady flow case [I, 2]. These variations are linked primarily 
with differences in the field of vortex formation and flow separation in the steady and un- 
steady cases, which leads to a change in the pressure distribution over the body. 

The present paper studies special features of the flow field behind two-dimensiOnal 
bodies of finite length and also some three-dimensional bodies with a two-dimensional cutoff 
exposed to an incident spherical shock wave. As two-dimensional bodies we used a circular 
disk, a square plate, and elliptic plates of different length; as three-dimensional bodies 
we used a hemisphere and a cylinder of finite length mounted with one end facing the flow. 

i. Statement of the Experiment. The test body was suspended by means of fine tension 
wires in the field of view of an optical system consisting of a one-sided type IAB-451 TDpler 
schlieren instrument, a high-speed type SFR-2M photorecorde r operating in the continuous 
scan regime, and a lamp forming a series of short light pulses. To generate the spherical 
shock wave we exploded a charge of solid explosive material set up at a distance R from the 
body. The parameters of the shock wave incident on the body were measured with the aid of a 
piezoelectric static pressure sensor connected to an electronic recorder. 

The initial air pressure in the experiments was varied in the range Po = (0.i-2)'i0 s Pa, 
the distance from the body to the center of the explosion was R = 0.3-5 m, and the character- 
istic dimension of the body was d = 9-200 mm. The values of Po, d, R and the amount of explo- 
sive were chosen so as to investigate the influence on the flow field of one of the dimension- 

less parameters of the process: the Mach, Reynolds, and Strouhal numbers, while keeping the 
other two constant. Here M = ul/cl; Re = D1uld/u1; Sh = d/u~t+; 01, ul, UI, ci are, respec- 
tively, the density, velocity, and viscosity of the gas and the speed of sound in it; the sub- 
script 1 refers to values immediately behind the shock wave; t+ is the time of action of the 
compressive wave phase. 

2. Vortex Field behind a Circular Disk. Figure la-f shows characteristic photographs 
from high-speed movies of flow over a disk of diameter d = 50 mm mounted perpendicular to the 
incident gas stream (angle of attack ~ = 90~ The dimensionless parameters in this case had 
the values: M = 0.28, Re = 4.5"10 , Sh = 0.16). The time, reduced to dimensionless form 
(T = t/t+), from the start of action of the wave on the body to the time of the picture was, 

respectively, T = 0.04; 0.ii; i; 1.8; 2.3; 3.2. 

During passage of the shock wave over the edge of the disk annular tangential discon- 
tinuities are formed ahead of the body and behind it, separating regions behind the curved 
reflecting wave, the rarefaction wave moving over the forward surface of the disk and the 
compression wave propagating over its rear surface. Because of the flowseparation at the 
disk edge a toroidal vortex forms near it, twisting in the other direction. At the initial 
time this flow field at the disk edge is entirely similar to flow over a planar shock wave 
over the edge of a plate of infinite length [3]. Later differences appear: After the vortex 
grows it separates at the plate, and then the vortex is carried away from the flow. For a 
disk the initial period of vortex formation, accompanied by growth of its dimensions and 
increasing distance to the disk plane, is ended by a period of stabilization. In this per- 
iod, in spite of the variation of pressure, density, and velocity of the gas behind the shock 
wave front, the distance I between the vortex ring and the disk plane practically does not 

change, and on the l(t) curve there is an extended plateau (Fig, 2 curve 2). In the positive 
direction I is assumed to be the displacement of the ring from the disk to the wave front, 
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Fig. 1 Fig. 2 

and as the characteristic time in reducing the quantity t to dimensionless form we take the 
time to = d/ul for the gas particles ~to travel a path equal to the characteristic body di- 
mension. At the end of the compression wave phase the vortex ring begins to move towards 
the disk, and after a certain time it intersects the disk plane. The maximum velocity of 
motion of the ring reaches 20-30% of the flow s~eed behind the wave front. 

In the subsequent motion of the ring in the direction towards the center of the explo- 
sion it withdraws from the disk, and the ring gradually decreases in intensity, begins to lose 
its planar shape, and then breaks up. The ring diameter increases monotonically with time, 
and at the time of vortex breakup it exceeds the disk diameter by a factor of 1.7-2. 

This flow field in the near wake behind the disk with a spherical shock wave incident 
on it is the same as the field behind a circular cone at zero angle of attack [2]. The time 
t e of existence of the vortex ring, reduced to dimensionless form, is te/to = 20, which is 
close to the value for a circular cone at the same flow parameters. Investigations of the 
flow field have shown that the dynamics of development of the vortex ring and its lifetime 
are practically independent of the values of Mach and Reynolds numbers, which were varied 
sequentially in the ranges: 0.07 ~ M ~0.5 for Re = 2.25"105 , Sh = 0.56; 4.5"10 ~ ~ Re 
9.103 for M = 0.3, Sh = 0.16. 

The stabilization of the position of the vortex ring during changing external flow 
parameters can be explained as follows. It is known that a solitary vortex ring in a gas at 
rest moves relative to the gas with greater velocity, the smaller is its cross section [4]. 
In the formation of a ring behind the disk the ring velocity vector is directed opposite to 
the incident flow vector. Behind the front of a spherical shock wave the gas pressure de- 
creases. This leads to a reduction of gas density inside the vortex region, while the total 
intensity of the ring is conserved (we neglect viscous losses in the first approximation), 
and to a corresponding increase of the area of cross section of the ring. As a result the 
velocity of motion of the ring relative to the external gas flow must fall with time, but, 
since the flow velocity in the compression wave phase also decreases monotonically, the total 
velocity of the vortex ring is close to zero for a considerable time. In the rarefaction 
phase the external pressure and correspondingly the dimensions of the vortex cross section 
vary slightly, while the gas flow velocity changes sign, and as a result the ring begins to 

move toward the center of the explosion. 

It should be noted that the picture of vortex flow obtained in these experiments has no 
analogs in steady or unsteady separated flow of a liquid over bodies (see, for example, [5-8]). 

3. Influence of Degree of Unsteadiness. In these experiments the value of Strouhal num- 
ber varied in the range 0.03 ~ Sh ~ 2~3, the Mach number was fixed at M = 0.28, and the 
Reynolds number varied with the disk model used in the range Re = (9-45).104 . The displace- 
ment of the vortex ring as a function of time is shown in Fig. 2, and depends on the flow 
regime. The values of Strouhal number for the curves presented ~re: 1 -- Sh = 0.03; 2 -- 0.16; 
3 -- 0.7; 4 -- 2.27. 

For a small degree of unsteadiness of the flow process (Sh ~ 0.03), when the gas veloc- 
ity behind the shock wave front decreases slowly with time, the self velocity of the vortex 
ring is not enough to compensate the incident flow velocity. As a result the vortex formed 
is drawn away by the external flow and begins to Withdraw rapidly from the body (curve 1 in 
Fig. 2). At a distance from the disk of I ~ 0.5d the shape of the vortex ring begins to be 
distorted, it loses stability, and breaks up quickly. The vortex lifetime in dimensionless 
form te/to is small in this case (Fig. 3). 
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An increase of the degree of unsteadiness results in the external flow velocity varying 
with time more rapidly, the result being that at the time of formation of the vortex~ring the 
gas velocity becomes insufficient to carry away the vortex and break it up. In the region 
of Strouhal number 0.037 ~ Sh ~ 0.9 in the compression phase of a spherical wave we observe 
stabilization of the position of the vortex ring relative to the body generating it, and the 
curves of ~(t) show corresponding plateaus (see Fig. 2, curves 2, 3). 

The greatest vortex lifetime te/to = 55 is reached for Sh = 0.04 near the boundary of 
the region of stability of the ring (broken line in Fig. 3). An increase of the degree of un- 
steadiness (Sh > 0.04) causes a rapid reduction of the relative lifetime of the vortex ring. 
This is linked, apparently, to the fact that an increase of Strouhal number and a corre- 
sponding increase of the velocity gradient of the gas behind the wave front lead to reduced 
drift of the vortex relative to the body. As a result of the more intensive interaction be- 
tween the vortex and the body the circulation of the vortex rapidly reduces with time, and 
in its s~sequent motion the vortex quickly loses stability and breaks up. An increase of 
the degree of unsteadiness also leads to the result that the period of formation of the vor- 
tex occupies a larger part of the shock wave compression phase, and the length of the vortex 
stabilization period is correspondingly curtailed. For Sh ~ 0.9 the vortex stabilization 
period disappears completely (curve 4 in Fig. 2). 

4. Influence of Angle of Attack. In the experiments we used a disk of diameter d = 50 
mm, and the parameters of the flow process were: M = 0.28, Sh = 0.16, Re = 4"105 . The disk 
angle of attack varied from 90 to 97.5 ~ in steps of 2.5 ~ Photographs of flow over the disk 
at angle of attack e = 97.5 ~ at times ~ = 0.2, 1.2 are shown in Fig. 4a and b, respectively. 

Analysis of the results show that the downwash about the body when the disk is inclined 
initially causes a shift of the vortex ring over the disk surface. As a result, for a large 
enough slope angle of the disk one part of the vortex moves out completely ~LLto the incident 
gas flow, and the other is screened by the body. Later the part of the vortex located in the 
flow begins to lose its circular shape, e~odes, and is simultaneously displaced against the 
flow under the action of the screened part of the vortex ring, and here its displacement oc- 
curs with a larger velocity than in the axisymmetric case (at angle of attack ~ = 90~ 

The reverse part of the vortex (Fig. 4a, b below) is close to the disk for a long time, 
in the aerodynamic wake behind it, and only after the external flow velocity becomes negative 
does this part of the vortex expand along the radius and begin to move towards the center 
of the explosion. The intensity of this part of the vortex is roughly the same as for ~ = 
90 ~ , but its displacement velocity is noticeably less, linked to smearing and attenuation of 
the vortex in the upper half of the ring. 

The result is that behind an inclined disk (inclined relative to the wave front) the 
vortex ring is also inclined with time, but in the opposite direction, and the angle of this 
slope increases with the slope of the disk, and in addition, it becomes appreciably asymmet- 
rical in its cross sectional shape and intensity. These features of a ring vortex behind 
a body with angle of attack e # 90 ~ do not allow a single-valued determination of its life- 

time. 

5. Flow over a Short Plate. To determine the influence of the plate shape in plan 
view on the stability of the ring vortex we investigated flow over a square plate, and also 
over elliptic plates with semiaxis ratio b/a varying in the range b/a = 0.5-0.96. The di- 
mensionless flow parameters were: M = 0.28, Re = 4"105 , Sh = 0.16, and the plate angle of 
attack was ~"= 90 ~ . 

When the shock wave acts on an elliptic plate the closed vortex formed is first planar 
and has the same shape in plan view as the plate. Later the "flattened" parts of the vortex 
ring, having a large radius of curvature and correspondingly less velocity of self motion, 

554 
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are displaced under the action of the flow farther from the disk plane than the "elongated" 
parts. Figure 4c and d shows the flow field around an elliptic plate with semiaxis ratio 
b/a = 0.6. The large axis of the plate lies in the plane of the picture, and the time values 

are: c) T = 0.15, d) T = 2.14. 

For a decrease of the external flow velocity the vortex sections corresponding to the 
small axis of the plate begin to withdraw from each other and simultaneously move towards 
the center of the explosion with a greater velocity than the sections corresponding to the 
large axis. As a result, at the end of the compression phase of the wave the large and 
small axes of the elliptic vortex ring exchange places, and there is also a change in the 
relative longitudinal position (in the gas flow direction) of the different sections of the 

ring (see Fig. 4d). 

In the case of an elliptic plate with semiaxis ratio b/a < 0.6 the velocities of the 
different sections of the vortex ring differ so much that the vortex breaks up soon after it 
forms. An analogous result was obtained for elliptic cones [2]. 

In the interaction of a shock wave with a square plate at first the vortex sections 
corresponding to the plate corners retain their motion relative to the remaining part of 
the vortex. Then they begin to move more rapidly and there arise longitudinal oscillations 
of parts of the vortex relative to its mass center (see Fig. 4e, T = 0.85; f, T = 1.14). 
The amplitude of these oscillations attenuates slightly with time, and the dimensionless 

period of the oscillations at the start of the process is T/to = 1.8 (to = d/cl, where d 
is the side of the square). Up to the end of the compression phase of the wave the period 
of the oscillations increases to T/to = 2.4, due, apparently, to the increase of the trans- 
verse dimensions of the vortex ring. 

6. Flow over Three-Dimensional Bodies with a Planar Face. Experiment~ show that the 
phenomenon of forming stable vortex rings in the unsteady gas flow behind a spherical shock 
wave is typical for the majority of bodies having a ratio of their transverse dimensions 
on the order of I, and also having a planar afterbody cutoff located perpendicular to the 
incident gas flow. As an example Fig. 5a at time T = 0.i shows flow over a hemisphere 
mounted at angle of attack ~ = 0 ~ 

In flow over bodies with a planar forward face a vortex ring is also formed, but its 
stability depends on the relative length of the body in the longitudinal direction. In 

particular, for a cone with a vertex angle of 30 ~ mounted at an angle of attack of ~ = 
180 ~ , the vortex ring breaks up soon after it is formed, due to interaction with the lateral 
surface of the cone [2]. On the other hand, for a hemisphere at an angle of attack of ~ = 
180 ~ , the vortex ring is roughly the same as for ~ = 0, but the distance between the plane 
of the ring and the body midsection at ~ = 180 ~ is greater by a factor of about 1.5 (see 
Fig. 5b). 

In the case of flow over bodies with two planar faces, a vortex ring forms on each, 
but the forward ring is usually rapidly smeared due to the proximity of the lateral sur- 
face of the body and is carried away by the flow, while the rearward vortex retains its 
shape and location for a long time. By way of illustration Fig. 5c and d shows pictures of 
the flow over a circular cylinder mounted with its face to the flow, at times T = 0.07 and 
1.07, respectively. 

Fig. 5 
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SUPERSONIC FLOW OVER A WING AT HIGH ATTACK ANGLES 

V. N. Golubkin UDC 533.6.011.5 

The thin shock layer method [i] is applied to the problem of supersonic gas flow with 
Mach number M~ >> 1 over the windward surface of a thin wing. This method makes use of the 
significant increase in gas density at the compression discontinuity, together with the cor- 
responding small parameter E, which is equal to the ratio of the densities at the disconti- 
nuity. Consideration of the problem as g + 0 permits approximate consideration of the effect 
of the real physicochemical properties ofithe gas at high temperatures and determines the 
specifics of the problem's mathematical formulation and solution, as compared to theories 
in which together with the small parameter M~ I geometric parameters are employed (attack 
angle ~, relative wing thickness d, elongation I), which vary over various ranges [2, 3]. 

If d = O(1) (for example, [3-6]) or d < O(i), but exceeds the compressed layer thick- 
ness in order of magnitude (for example, [7, 8]), then in the main "Newtonian" approxima- 
tion the form of the discontinuity coincides with the body form, and the problem consists of 
finding subsequent approximations. 

The most interesting and mathematically complex case is that in which the wing thick- 
ness is small and coincides in order of magnitude with the compressed layer thickness, and 
the form of the compression discontinuity must be determined in the process of solution. 
This ease will be cQnsidered below. For flow over a thin wing of small elongation (d = 
O(~tan~), X = O(e */2 tana), ~ = O(i), cos a=O(1), when e ~ 0) the supersonic law of planar sec- 
tions for thin bodies at large attackan~les [2] is valid, which law inconjunctionwiththe limiting 
transition~ + 0 reduces the problem to calculation of a two-dimensional nonsteady-state flow 
in a plane perpendicular to the wing axis and moving with a velocity V~ cos e [9, I0]. The 
problem of flow over a plane wing of small elongation at attack angles close to 90 ~ (cos ~ = 
O(s)) proves equivalent to the two-dimensional problem of stationary flow over a plate located 
perpendicular to the incident flow [ii]. For the intermediate attack angle range (cos ~ = 

I/2 O(s ))such an equivalence is valid in the region adjacent to the compression discontinuity, 
but in the low velocity wall layer change along the chord must be considered. 

For flow over a thin wing of finite extent (d = 0(~ tan ~), I = O(i)) at an attack angle 
= O(i) (cos ~ = O(i) as E + 0), the discontinuity adjoins the edge and in the fundamental 

approximation of the thin shock layer method the well-known law of bands is valid [12], per- 
mitting independent calculation in each plane along the wing chord of a two-dimensional flow, 
which in light of the unsteady state analogy [i] is equivalent to a one-dimensional unsteady 
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